

Prof. Ahmad Mohammad Ibrahim Qazza

aqazza@zu.edu.jo dr_qazza@yahoo.co.uk

Applied Mathematics/ Differential Equation

Academic Rank: Professor of Applied Mathematics

Membership:

1.	American Mathematical Society(AMS).	
	Providence, Rhode Island, US	2020- until to date
	Member ID: QZAHMAA:	
2.	Society for Industrial and Applied Mathematics	2020 until to data
	Member Number: 001050695.	2020- until to date
3.	Saudi Association for Mathematical Sciences	2024 until to data
	Membership ID: 1022195623	2024- until to date

Qualifications:

1	Ph.D. in Differential Equation 2000, Faculty of Mechanics and Mathematics, Department of Differential Equation, Kazan State University (Kazan Federal University) Russia:
	Degree Specialization: Differential equations.
	• Title of Ph.D., Thesis: <i>Reduction of Dirichlet problem and its generalization for elliptical equations to the boundary problems for holomorphic function.</i>
	M.Sc. in Differential Equation 1996, Faculty of Mechanics and Mathematics,
	Department of Differential Equation, Kazan State University (Kazan Federal
2	University), Russia:
2	• Degree Specialization: Differential equations.
	• Title of M.Sc., Thesis: <i>The application of integral transformation by Mellin's</i>
	Nucleus in Bessel's theory.

Scholarships Received:

- Scholarship for the Ph.D. degree from Kazan State University, Russia.
- Scholarship for Bachelor degree from Ministry of Higher Education, Jordan.

Other Things Have been included among World's Top 2% Scientists List created by Scholars from Stanford University in 2023.

Academic Links:

- <u>https://scholar.google.com/citations?hl=ar&user=RouKrs4AAAAJ</u>
- https://www.researchgate.net/profile/Ahmad-Qazza
- <u>https://www.webofscience.com/wos/author/record/AAE-4117-2021</u>
- <u>https://orcid.org/my-orcid?orcid=0000-0002-8404-3897</u>
- https://www.scopus.com/authid/detail.uri?authorId=56194015400
- https://www.linkedin.com/in/dr-ahmad-qazza-b313a282
- <u>https://www.facebook.com/aqazza</u>
- https://staff.zu.edu.jo/academic/index/4880
- <u>https://twitter.com/a_qazza</u>
- <u>https://github.com/aqazza1</u>

Zarqa University- Jordan

Objective(s):

- **1. Enhancing Research Capabilities:** To spearhead research initiatives that foster innovation in Applied Mathematics, particularly in the realm of Differential Equations. My intent is to publish in esteemed journals and collaborate with peers and industry experts to solve complex mathematical problems with real-world applications.
- 2. Collaborating and Sharing Knowledge: To establish a network of interdisciplinary collaborations that facilitate the exchange of knowledge, methodologies, and resources. By doing so, I aim to stay at the forefront of emerging trends and technologies.
- 3. Enhancing Student Engagement: To implement active learning strategies and experiential learning methods that can foster a stimulating educational environment. My goal is to create a holistic curriculum that not only imparts theoretical knowledge but also instills the skills necessary for students to excel in their future endeavors.
- **4. Improving Curriculum Design:** To work collaboratively with educational stakeholders in revamping curriculum structures that are aligned with the demands of the modern world. My focus is to integrate technological tools and innovative teaching techniques to make the learning experience more effective and engaging.
- **5. Preparing Students for the Future:** To guide students in their academic and career paths by offering mentorship and counseling services. I aspire to develop future leaders who can contribute positively to society and the scientific community at large.

Area of Interest:

Fields of interest: Boundary Value Problems for PDEs of Mathematical Physics (Laplace equation, Helmholtz equation, heat equation, etc); Boundary Integral Equation Methods; Integral Representations for Solutions; integral equations with logarithmic and Cauchy kernels; boundary value problems for analytic complex functions; applications of boundary value problems to mathematical modelling in acoustics, fluid dynamics, physics and engineering; numerical methods; Fractional Integrals and Derivatives Theory and Applications.

Zarqa University- Jordan Curriculum Vitae

Representative of the College of Science in the University Council (Zarqa
University)
Representative of the College of Science and Information Technology in
the University Council (Jadara University)
Representative of the College of Science and Information Technology in
the University Council (Irbid University)
Member of the quality council - Zarqa University (Many times)
Member of the quality council - Jadara University (Many times)
Member of the efficiency committee – Zarqa University (Many times)
Member of the science faculty council–Zarqa University (Many times)
Member of the science and Information Technology faculty council-
Jadara University (Many times)
Member of the science and Information Technology faculty council-Irbid
University (Many times)
Head of, quality Committee of science faculty (Zarqa, Jadara, Irbid)
Head of, Social Committee (Jadara, Irbid)
Member of , Social Committee (Zarqa)
Head of, Qualifying exam committee (Zarqa, Jadara, Irbid)
Head of, Examinations Committee (Zarqa, Jadara, Irbid)
Head of, Development and Planning Committee (Zarqa, Jadara, Irbid)
Head of, Study Schedule Committee (Zarqa, Jadara, Irbid)
Member of postgraduate studies committee (Zarqa University)
Member of Research and Scientific committee (Zarqa, Jadara, Irbid)
Member of the Organizing Committee of The 6th International Arab
Conference on Mathematics and Computations, Zarqa University, 2019.
Co-Chair of The 7th International Arab Conference on Mathematics and
Computations, Zarqa University, 2022.
Co-Chair of The 8th International Arab Conference on Mathematics and
Computations, Zarqa University, 2023.
Head of Mathematics department/ Jadara University Sep 2010 – 2017.
Vice Dean in Faculty of Science / Zarqa University Sep 2018- 2023.

Teaching Experience:

#	From	to		
1	2004	2008	Job title Employer	Assistant professor Irbid National University/Irbid–Jordan. Department of Mathematics
2	2008	2016	Job title Employer	Assistant professor Jadara University/Irbid–Jordan. Department of Mathematics
3	2010	2017	Job title Employer	Head of Math. Dept. Jadara University/Irbid–Jordan. Department of Mathematics
4	2016	2017	Job title Employer	Associate professor Jadara University/Irbid–Jordan. Department of Mathematics
6	2017	2.23	Job title Employer	Associate professor Zarqa University/Zarqa–Jordan. Department of Mathematics
7	2018	2023	Job title Employer	Vice Dean of the faculty of science Zarqa University/Zarqa–Jordan. Department of Mathematics
8	2023	until todate	Job title Employer Department of	Professor Zarqa University/Zarqa–Jordan. Mathematics

Publications:

الاصدار	السنة	جهة النشر	عنوان البحث جهة النشر	
	2023	EICEEAI)	Prediction of Visceral Leishmaniasis Incidences Utilizing Machine Learning Techniques	1.
34(1)	2024	Applied RheologyRamification of Hall effects in a non-Newtonian model past an inclined microchannel with slip and convective boundary conditions		2.
12	2024	Frontiers in Physics	An efficient approximate analytical technique for the fractional model describing the solid tumor invasion	3.
2(1)	2024Open PhysicsTwo-phase numerical simulation of thermal and solutal transport exploration of a non-Newtonian nanomaterial flow past a stretching surface with chemical reaction		4.	
11	2024	Frontiers in Materials	On the thermal performance of radiative stagnation-point hybrid nanofluid flow across a wedge with heat source/sink effects and sensitivity analysis	5.

		IAENG International	Innovative Approaches to Linear Volterra Partial		
51(7)	2024	Journal of Computer	Integro-Differential Equations: A Laplace	6.	
		Science	Residual Power Series Perspective		
140(2)	2024	Computer Modeling in	Composite Fractional Trapezoidal Rule with	7	
140(3)	2024	Engineering & Sciences	Romberg Integration	1.	
		Dartial Differential	Optimized technique and dynamical behaviors		
10	2024	Faultions in Applied	of fractional Lax and Caudrey–Dodd–Gibbon	0	
10	2024	Equations in Applied	models modelized by the Caputo fractional	δ.	
		Wathematics	derivative		
		Progress in Fractional	Applying Conformable Double Sumudu – Elzaki		
10(2)	2024	Differentiation and	Approach to Solve Nonlinear Fractional	9.	
		Applications	Problems		
		European Journal of Pure	Analyzing the Impact of Control Strategies on		
17(2)	2024	and Applied Mathematics	VisceralLeishmaniasis: A Mathematical	10.	
		and Applied Mathematics	Modeling Perspective		
			Predicting the thermal distribution in a		
14(1)	2024	scientific reports	convective wavy fin using a novel training	11.	
			physics-informed neural network method		
			Exploring analytical results for (2+1)		
9(5)	2024	AIMS Mathematics	dimensional breaking soliton equation and	12.	
			stochastic fractional Broer-Kaup system		
0(5)	2024	AIMS Mathematics	A new approach in handling one-dimensional	12	
9(3)	2024	Anvis Mathematics	time-fractional Schrödinger equations		
			A new analytical algorithm for uncertain		
9(4)	2024	AIMS Mathematics	fractional differential equations in the fuzzy	14.	
			conformable sense		
			Modeling COVID-19 spread and non-		
24	2024	Scientific African	pharmaceutical interventions in South Africa: A	15.	
			stochastic approach		
32(3)	2024	Engineering Letters	Double Laplace Formable Transform Method	16	
52(5)	2024		for Solving PDEs	10.	
			Mathematical modeling and stability analysis of		
10(5)	2024	Heliyon	the novel fractional model in the Caputo	17.	
			derivative operator: a case study		
			A quintic B-spline technique for a system of		
9(2)	2024	AIMS Mathematics	Lane-Emden equations arising in theoretical	18.	
			physical applications		
		IAENG International	A Fractional Study for Solving the SIR Model		
54(2)	2024	Journal of Applied	and Chaotic System	19.	
		Mathematics			

33(3)	2024	Journal of Mathematics and Computer Science	Analyzing convex univalent functions on semi- infinite strip domain	
18(1)	2024	Applied Mathematics & Information Sciences	Fractional Partial and Integral Differential Equations and Novel Conformable Double (Laplace -Sumudu) Transform	21.
21(1)	2023	Open Mathematics	An application of Hayashi's inequality in numerical integration.	22.
18(1)	2024	Applied Mathematics & Information Sciences	Numerical Simulation of an Influenza Epidemic: Prediction with Fractional SEIR and the ARIMA Model	23.
22	2023	WSEAS Transactions on Mathematics	A Generalized Hybrid Method for Handling Fractional Caputo Partial Differential Equations via Homotopy Perturbed Analysis	24.
138(2)	2023	Computer Modeling in Engineering & Sciences	Results Involving Partial Differential Equations and Their Solution by Certain Integral Transform	
144(1)	2024	Journal of Engineering Mathematics	Effective methods for numerical analysis of the simplest chaotic circuit model with Atangana– Baleanu Caputo fractional derivative	
2023	2023	Mathematical Problems in Engineering	A New Computational Technique for Analytic Treatment of Time-Fractional Nonlinear Equations Arising in Magneto-Acoustic Waves	
7(4)	2023	Fractal and Fractional	A Numerical Solution of Generalized Caputo Fractional Initial Value Problems	
41(6)	2023	Journal of Applied Mathematics and Informatics	On the fibers of the tree products of groups with amalgamation subgroups	
17(4)	2023	Applied Mathematics and Information Sciences	ARA-Sumudu Method for Solving Volterra Partial Integro-Differential Equations	30.
17(5)	2023	Applied Mathematics and Information Sciences	A Numerical Confirmation of a Fractional SEITR for Influenza Model Efficiency	31.
12(9)	2023	Axioms	A Perturbed Milne's Quadrature Rule for n- Times Differentiable Functions with Lp-Error Estimates	
12(4)	2023	Axioms	Application of the Optimal HomotopyAsymptotic Approach for Solving Two-PointFuzzy Ordinary Differential Equations ofFractional Order Arising in Physics	
16(2)	2023	European Journal of Pure and Applied Mathematics	A New Scheme for Solving a Fractional Differential Equation and a Chaotic System	34.

		AIMS Mathematics	Effective transform-expansions algorithm for		
8(9)	2023		solving non-linear fractional multi-pantograph	35.	
			system		
17(5)	2023	Applied Mathematics and	ARA-Homotopy Perturbation Technique with	36	
17(3)	2025	Information Sciences	Applications	50.	
16(2)	2023	European Journal of Pure	New Bounds For The Eigenvalues Of Matrix		
10(2)	2023	and Applied Mathematics	Polynomials	57.	
12(8)	2023	Axioms	Further Accurate Numerical Radius Inequalities	38.	
9(5)	2023	Helivon	Modified conformable double Laplace–Sumudu	30	
)(3)	2025	Thenyon	approach with applications	59.	
		WSEAS Transactions on	A New Approach in Solving Regular and		
22	2023	Mathematics	Singular Conformable Fractional Coupled	40.	
		Widthematics	Burger's Equations		
12(0)	2022	Aviona	On Further Refinements of Numerical Radius	4.1	
12(9)	2025	AXIOIIIS	Inequalities	41.	
22	2022	WSEAS Transactions on	A New Computation Approach: ARA	40	
LL	2025	Mathematics	Decomposition Method	42.	
		International Journal of	A New Devenenting on the Stachastic Exectional		
9(5)	2023	Mathematical,	A New Perspective on the Stochastic Fractional	10	
8(5)		Engineering and	Order Materialized by the Exact Solutions of	43.	
		Management Sciences	Allen-Cahn Equation		
			A modern analytic method to solve singular and		
11	2023	Frontiers in Physics	non-singular linear and non-linear differential	44.	
			equations		
		Error Land La Dana	Adapting Integral Transforms to Create Solitary		
16(2)	2023	European Journal of Pure	Solutions for Partial Differential Equations Via	45.	
		and Applied Mathematics	A New Approach		
12(0)	2022	<u> </u>	Lp-Mapping Properties of a Class of Spherical	1.5	
12(9)	2023	Axioms	Integral Operators	46.	
			Numerical solution for the system of Lane-		
8(6)	2023	AIMS Mathematics	Emden type equations using cubic B-spline	47.	
			method arising in engineering		
		International Journal of			
		Applied and	Trustworthy Analytical Technique for		
9(5)	2023	Computational	Generating Multiple Solutions to Fractional	48.	
		Mathematics	Boundary Value Problems		
	ł	Partial Differential	Adapting partial differential equations via the		
8	2023	Equations in Applied	modified double ARA-Sumudu decomposition	49.	
		Mathematics	method		
	European Journal of Pure Solution of Integral Equations Via I	Solution of Integral Equations Via Laplace ARA			
16(2)	2023	and Applied Mathematics	Transform	50.	

2023	2023	International Journal of Mathematics and Mathematical Sciences	Nth Composite Iterative Scheme via Weak Contractions with Application	
6(12)	2022	Fractal and Fractional	Analytical Solution of Coupled Hirota–Satsuma and KdV Equations	
2022	2022	Journal of Applied Mathematics	A Fundamental Criteria to Establish General Formulas of Integrals	53.
136(3)	2023	CMES - Computer Modeling in Engineering and Sciences	On Time Fractional Partial Differential Equations and Their Solution by Certain Formable Transform Decomposition Method	54.
12(2)	2023	Axioms	Direct Power Series Approach for Solving Nonlinear Initial Value Problems	55.
2023	2023	Applied Computational Intelligence and Soft Computing	On the Analytical Solution of Fractional SIR Epidemic Model	56.
15(1)	2023	Symmetry	Conformable Double Laplace–Sumudu Iterative Method	57.
21	2022	WSEAS Transactions on Mathematics	Multi-Fuzzy Rings	
8(3)	2023	AIMS Mathematics	Solving fractional partial differential equations via a new scheme	
11(10)	2022	Axioms	A Novel Approach in Solving Improper Integrals	
6(9)	2022	Fractal and Fractional	onal A New Approach Using Integral Transform to Solve Cancer Models	
8(1)	2023	AIMS Mathematics	A hybrid analytical technique for solving multi- dimensional time-fractional Navier-Stokes system	62.
10(19)	2022	Mathematics	General Master Theorems of Integrals with Applications	63.
2022	2022	Mathematical Problems in Engineering	Application of ARA-Residual Power Series Method in Solving Systems of Fractional Differential Equations	
14(9)	2022	Symmetry	Applications on Double ARA–Sumudu Transform in Solving Fractional Partial Differential Equations	
6(8)	2022	Fractal and Fractional	Homotopy Analysis Method Analytical Scheme for Developing a Solution to Partial Differential Equations in Fuzzy Environment	
10(15)	2022	Mathematics	On the Double ARA-Sumudu Transform and Its Applications	67.

الإصدار : 01

		Alexandria Engineering	APA residual power series method for solving		
62 2023 Journal		Journal	partial fractional differential equations	68.	
			Exact Solutions of Nonlinear Partial Differential		
11(6)	2022	Axioms	Equations via the New Double Integral	69	
(-)			Transform Combined with Iterative Method	07.	
			A Novel Numerical Approach in Solving		
14(1)	2022	Symmetry	Fractional Neutral Pantograph Equations via the	70.	
	-		ARA Integral Transform	,	
			A new attractive method in solving families of		
9(23)	2021	Mathematics	fractional differential equations by a new	71.	
- (-)	-		transform	, 11	
		~	A new integral transform: ARA transform and		
12(6)	2020	Symmetry	its properties and applications	72.	
			The existence of a solution for semi-linear		
31(5)	2018	International Journal of	abstract differential equations with infinite B-	73.	
		Applied Mathematics	chains of the characteristic sheaf		
15(1)	2019	Journal of Mathematics	Modification on PPS Sample Scheme with		
		and Statistics	Replacement	74.	
107(1) 20		Far East Journal of	A New Procedure For Selecting A Sample With		
	2018	Mathematical Sciences	Unequal Probability Without Replacement	75.	
		Far East Journal of	On the choice of strategy for modified midzuno		
101(7)	2017	Mathematical Sciences	scheme	76.	
		Far East Journal of	About the solution stability of volterra integral		
100(5)	2016	Mathematical Sciences	equation with random kernel	77.	
		Advances in Differential			
17(3)	2016	Fauations and Control	Dirichlet Problem in a Simply Connected	78	
17(3)	2010	Processes	Domain, Bounded by the Nontrivial Kind	70.	
		Inurnal of Mathematics			
10(2)	2014	and Statistics	Stationary connected curves in Hilbert spaces	79.	
55(2)	2010	Studia Universitatis	An inversion of one class of integral operator by	80	
55(2)	2010	Babeş-Bolyai	la sakhnovich's operator identity method	00.	
22(4)	2009	International Journal of	Dirichlet Problem in the Simply Connected	81.	
		Applied Mathematics	Domain, Bounded by Unicursal Curve		
		International Sharper inequalities for Powers of the numeric	Sharper inequalities for Powers of the numerical		
4(29)	2009	Mathematical Forum	radii of Hilbert space operators	82.	

Supervision of Theses:

Zarqa University- Jordan

	Year	Thesis Title	Student Name
1.	2019	B-Spline Method for Solving Boundary Value Problems of Differential Equations	Halima Abu Hatab
2.	2019	A Sinc – collocation method for solving integro – differential equations of conformable fractional derivative	Doaa al-Qutani
3.	2019	Spectral Collocation Method for Solving Fractional Integro-Differential Equations	Haya Abozour
4.	2019	Solving Fractional Differential Equations of Boundary Value Problems Using the Cubic B-Spline Method	Ehdaa Mahmoud Abdallah Fadel
5.	2019	Spectral Collocation Method for Solving Fractional Integro-Differential Equations	Haya Mohammed Abozour
6.	2020	Numerical Solutions of Nonlinear Differential Equations Using Cubic B-Spline	Baraa Mahmood Ayasrah
7.	2021	Laplace-Residual Power Series Method for Solving the Fractional Differential Equations	Areej Rizeq Abd – Alttif Hijjawi
8.	2021	Solving Initial Value Problems for Fractional Differential Equations by Cubic B- Spline Method	Bashar Hussien Rateb Rayan
9.	2021	Solving Fractional Differential Systems by Laplace- Residual Power Series Method	Emad Zeyad Abedalaziz Salah
10.	2021	Solving Fractional Differential Equations of Boundary Value Problems Using the Cubic B-Spline Method	Ehdaa Mahmoud Abdallah Fadel
11.	2023	Applications of ARA Transform in Solving Differential Equations	Areej Mohammad Anees Abuomar
12.	2023	The Solutions of Some Types of Fractional Differential Equations Using the Power Series Method	Shadi Jaber
13.	2023	Numerical Solutions of Stochastic Ordinary Differential Equations	Bashar Salem Musa Aloudat
14.	2024	A Hybrid Analytical-Numerical Approach for Solving Caputo Fractional Differential Equations with Proportional Delay	Ali Waheed Najeeb Haj Abdelrahman
15.	2024	Analytical Solutions of Caputo Fractional Pantograph- Type Equation	Mohammad Jebrel Ahmad Almashny
16.	2024	Applications of the q-Laplace Transform in Quantum Calculus	Fathi Ahmed Fathi Zalloum

Courses Taught at Undergraduate Level:

- 1. Calculus I
- 2. Calculus II
- 3. Calculus III
- 4. Intermediate Analysis

- 5. Ordinary Differential Equation 1 & II.
- 6. Mathematical Method.
- 7. Partial Differential Equation 1 & II.
- 8. Complex Analysis I
- 9. Applications of Mathematica.
- 10. Principles of Mathematics.
- 11. Numerical Analysis (1).
- 12. Linear Algebra(1).
- 13. Special topics.

Courses Taught at Master's:

- 1. Theory of ordinary differential equations
- 2. Partial differential equations
- 3. Selected topics in applied mathematics
- 4. Advanced numerical analysis

Personal Information:

Name	:	Ahmad Mohammad Ibrahim Qazza			
Place and Date of Birth	:	Zarqa 22/9/1971			
Nationality	:	Jordanian			
Marital Status	:	Married			
Address	:	Zarqa - Hi Shakher			
Work Tel No.	:	05-3821100 Ext phone 1527			
Mobile:	:				
Postal Address	:	P.O. Box 200	0 Zarqa 13110) Jordan	

