ZU Logo
Home  |  Online Registration  |  eLearning  | Contact Us  |  عربي  


Researcher Name
Mohammad Aljaidi
Name Of Journal
Applied Sciences
Volume No.
13(8), 5081
Date Of Publication
2023.04
Abstract
Associative classification (AC) has been shown to outperform other methods of single-label classification for over 20 years. In order to create rules that are both more precise and simpler to grasp, AC combines the rules of mining associations with the task of classification. However, the current state of knowledge and the views of various specialists indicate that the issue of multi-label classification (MLC) cannot be solved by any AC method. Since this is the case, adapting or using an AC algorithm to manage multi-label datasets is one of the most pressing issues. To solve the MLC issue, this research proposes modifying the classification based on associations (msCBA) method by extending its capabilities to consider more than one class label in the consequent of its rules and modifying its rules order procedure to fit the nature of the multi-label dataset. The proposed algorithm outperforms several other MLC algorithms from various learning techniques across a variety of performance